ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
N. M. Steen
Nuclear Science and Engineering | Volume 38 | Number 3 | December 1969 | Pages 244-252
Technical Paper | doi.org/10.13182/NSE69-A21158
Articles are hosted by Taylor and Francis Online.
The purpose of this paper is twofold. The first is to provide a fast and accurate method of approximating the J(θ,β) function for a single resonance. The second objective is to provide a rapid method of averaging unresolved levels by use of this approximate J function and a recently developed quadrature scheme of the Gaussian type. These approximations are well suited for use in day-to-day reactor design and evaluation and are substantially faster and more accurate than other approximations currently available in the literature. The approximate J function has been tested on that portion of the θ,β plane for which β ≥ 5.0 × 10−5 and θ ≥ 5.0 × 10−4. This portion of the plane encompasses almost every conceivable practical situation. On this domain, typical relative errors incurred in J (θ,β) are 0.25% or less and the maximum relative error for any (θ,β) pair is 2.2% which is encountered at an extreme value of β = 5.0 × 10−5. The technique for J-function averaging produces relative errors < 0.10% for cases of practical interest.