ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
Chang-Joon Jeong, Hangbok Choi
Nuclear Science and Engineering | Volume 134 | Number 3 | March 2000 | Pages 265-280
Technical Paper | doi.org/10.13182/NSE00-A2115
Articles are hosted by Taylor and Francis Online.
The performance of reactivity devices for a Canada deuterium uranium (CANDU) 6 reactor loaded with Direct Use of Spent Pressurized Water Reactor Fuel In CANDU reactors (DUPIC) fuel is assessed. The reactivity devices studied are the zone controller units, the adjuster rods, and the mechanical control absorbers. For the zone controller system, the bulk reactivity control, spatial power control, and damping capability for spatial oscillation are investigated. For the adjusters, the xenon override, restart after a poison-out, shim operation, and power step-back capabilities are confirmed. The mechanical control absorber is assessed for the function of compensating temperature reactivity feedback following a power reduction. This study shows that the current reactivity device system of a CANDU 6 reactor is compatible with DUPIC fuel for normal and transient operations.