ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Robert E. Rothe
Nuclear Science and Engineering | Volume 35 | Number 2 | February 1969 | Pages 267-276
Technical Paper | doi.org/10.13182/NSE69-A21142
Articles are hosted by Taylor and Francis Online.
Critical parameters are reported for an essentially unreflected system containing uranium solution and a fixed neutron poison. The uranium solution contained 450.8 g of uranium per liter. The uranium was enriched to 93.19 wt% 235U. The fixed poison was natural boron contained in stainless steel plates and comprised 1.02 wt% of the plates. The total boron content was varied on successive runs by changing the number of plates. The plates were arranged along parallel chords of the 106.6-cm-diam cylindrical experimental tank; they were approximately uniformly spaced. Three types of measurements are reported. The first type provides data on an unpoisoned slab. In the second type, the uranium solution height at criticality was less than the height of the plates (119 cm) and provided data on a poisoned solution cylinder. When the boron concentration was 16.41 g/liter, the cylinder was sub-critical even if infinitely long. The third type of measurement, where the critical uranium solution height exceeded the plate height, allowed an evaluation of the interaction between an unpoisoned slab and a highly poisoned region. The highest boron concentration measured was 20.62 g/liter. The experimental data are compared with results from neutron transport and diffusion computer codes. Computer results also provide asymptotic values for critical parameters not amenable to measurement because of apparatus limitations. Finally, the computer was used to extend the applicability of the data to more general systems.