ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Robert E. Rothe
Nuclear Science and Engineering | Volume 35 | Number 2 | February 1969 | Pages 267-276
Technical Paper | doi.org/10.13182/NSE69-A21142
Articles are hosted by Taylor and Francis Online.
Critical parameters are reported for an essentially unreflected system containing uranium solution and a fixed neutron poison. The uranium solution contained 450.8 g of uranium per liter. The uranium was enriched to 93.19 wt% 235U. The fixed poison was natural boron contained in stainless steel plates and comprised 1.02 wt% of the plates. The total boron content was varied on successive runs by changing the number of plates. The plates were arranged along parallel chords of the 106.6-cm-diam cylindrical experimental tank; they were approximately uniformly spaced. Three types of measurements are reported. The first type provides data on an unpoisoned slab. In the second type, the uranium solution height at criticality was less than the height of the plates (119 cm) and provided data on a poisoned solution cylinder. When the boron concentration was 16.41 g/liter, the cylinder was sub-critical even if infinitely long. The third type of measurement, where the critical uranium solution height exceeded the plate height, allowed an evaluation of the interaction between an unpoisoned slab and a highly poisoned region. The highest boron concentration measured was 20.62 g/liter. The experimental data are compared with results from neutron transport and diffusion computer codes. Computer results also provide asymptotic values for critical parameters not amenable to measurement because of apparatus limitations. Finally, the computer was used to extend the applicability of the data to more general systems.