ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Nicola Pacilio
Nuclear Science and Engineering | Volume 35 | Number 2 | February 1969 | Pages 249-258
Technical Paper | doi.org/10.13182/NSE69-A21140
Articles are hosted by Taylor and Francis Online.
A method is proposed for measuring the prompt decay eigenvalue of the neutron population. It is based on the determination of the covariance of the integrated outputs from two neutron detectors placed in a nuclear reactor, for different values of the integration time interval. The covariance is measured by an analysis of the four types of combined outputs which can occur if only the sign of the signal with respect to its mean is recorded from each detector. In fact, the frequence of every combination ++, −+, −, +− assumes a different value according to the degree of coherence between the two detector counting outputs. The method allows experiments to be made with low-detection efficiency and can be applied also to fast reactor-noise analysis, unlike all the other variance-type procedures. Since the detection of only the sign of the variables is needed, a pulse counter is not indispensable and, therefore, the technique is expected to be applicable even to nonzero power reactors.