ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
K. D. Lathrop
Nuclear Science and Engineering | Volume 134 | Number 3 | March 2000 | Pages 239-264
Technical Paper | doi.org/10.13182/NSE00-A2114
Articles are hosted by Taylor and Francis Online.
To investigate errors caused by angular differencing in approximating the streaming terms of the transport equation, five different approximations are evaluated for three test problems in one-dimensional spherical geometry. The following schemes are compared: diamond, special truncation error minimizing weighted diamond, linear continuous (the original SN scheme), linear discontinuous, and new quadratic continuous. To isolate errors caused by angular differencing, the approximations are derived from the transport equation without spatial differencing, and the resulting coupled ordinary differential equations (ODEs) are solved with an ODE solver. Results from the approximations are compared with analytic solutions derived for two-region purely absorbing spheres. Most of the approximations are derived by taking moments of the conservation form of the transport equation. The quadratic continuous approximation is derived taking the zeroth moment of both the transport equation and the first angular derivative of the transport equation. The advantages of this approach are described. In all of the approximations, the desirability is shown of using an initializing computation of the = -1 angular flux to correctly compute the central flux and of having a difference approximation that ensures this central flux is the same for all directions. The behavior of the standard discrete ordinates equations in the diffusion limit is reviewed, and the linear and quadratic continuous approximations are shown to have the correct diffusion limit if an equal interval discrete quadrature is used.In all three test problems, the weighted diamond difference approximation has smaller maximum and average relative flux errors than the diamond or the linear continuous difference approximations. The quadratic continuous approximation and the linear discontinuous approximation are both more accurate than the other approximations, and the quadratic continuous approximation has a decided edge over the linear discontinuous approximation in relative flux errors. The diamond, weighted diamond, and linear continuous approximations show quadratic system absorption and system leakage error reduction behavior with increasing N. The linear discontinuous and quadratic continuous approximations show fourth-order error reduction in these quantities. In one of the two-region test problems, the slope of the exact angular flux changes from nearly vertical to nearly horizontal at those points in the exterior region at which the interior region source just becomes visible. At these spatial points, errors in the continuous approximations propagate to each successive outgoing direction, leading to an oscillatory spatial error. The discontinuous approximation does not propagate these errors, although errors near the point of rapid slope change are larger than in the quadratic continuous approximation.