ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
G. Melese-d'Hospital
Nuclear Science and Engineering | Volume 35 | Number 2 | February 1969 | Pages 165-175
Technical Paper | doi.org/10.13182/NSE69-A21132
Articles are hosted by Taylor and Francis Online.
If the coolant mass flow were constant across the core, the coolant temperature rise would be proportional to the channel power. But, without orificing, the coolant mass flow in the hot channel is smaller than the average flow while the outlet temperature is hotter than the mixed mean temperature. The approximate radial distributions of coolant mass flow (M/M0) and temperature rise (ΔT/ΔT0) are shown to depend only upon the (arbitrary) radial flux distribution (H/H0) and upon a single lumped core parameter (δ), proportional to the product of the pressure by the pressure drop. For simple radial flux distributions and when δ goes from zero to infinity, (M0/Mav) increases approximately from (Hav/H0) to one, while (ΔT0/ΔTav) decreases approximately from (H0/Hav)2 to (H0/Hav). The relationships between hot channel parameters, maximum clad or fuel temperatures, and thermal power are derived in the Appendix for a “chopped cosine” axial flux distribution.