ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
G. Melese-d'Hospital
Nuclear Science and Engineering | Volume 35 | Number 2 | February 1969 | Pages 165-175
Technical Paper | doi.org/10.13182/NSE69-A21132
Articles are hosted by Taylor and Francis Online.
If the coolant mass flow were constant across the core, the coolant temperature rise would be proportional to the channel power. But, without orificing, the coolant mass flow in the hot channel is smaller than the average flow while the outlet temperature is hotter than the mixed mean temperature. The approximate radial distributions of coolant mass flow (M/M0) and temperature rise (ΔT/ΔT0) are shown to depend only upon the (arbitrary) radial flux distribution (H/H0) and upon a single lumped core parameter (δ), proportional to the product of the pressure by the pressure drop. For simple radial flux distributions and when δ goes from zero to infinity, (M0/Mav) increases approximately from (Hav/H0) to one, while (ΔT0/ΔTav) decreases approximately from (H0/Hav)2 to (H0/Hav). The relationships between hot channel parameters, maximum clad or fuel temperatures, and thermal power are derived in the Appendix for a “chopped cosine” axial flux distribution.