ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Beyond conventional boundaries: Innovative construction technologies pave the way for advanced reactor deployment
In a bid to tackle the primary obstacle in nuclear deployment—construction costs—those in industry and government are moving away from traditional methods and embracing innovative construction technologies.
Harvey J. Amster
Nuclear Science and Engineering | Volume 34 | Number 3 | December 1968 | Pages 313-327
Technical Paper | doi.org/10.13182/NSE68-A21095
Articles are hosted by Taylor and Francis Online.
This work tests the accuracies of some common approximate methods for calculating spatially dependent neutron slowing down distributions. According to each procedure, an analytic expression for the detailed distribution of neutrons from a plane monoenergetic source in hydrogen is obtained and compared with accurate analytic solutions. Most of the latter are derived here and appear to have other far reaching potential applications. In particular, the exact value and first two lethargy derivatives of the collided angular flux at source lethargy are found in terms of elementary functions of position and angle. These results are used to show that an expression derived by McInerney for the spatial distribution of the scalar flux has, at any given position, only first-order accuracy in powers of lethargy, even though the zeroth and second spatial moments are exact at all lethargies. While the B-1 and P-1 approximations produce poor results at small lethargies, they are accurate at large values; for the errors are due primarily to high-order spatial Fourier components, and these rapidly decay with increasing lethargy. At any lethargy, a Tauberian theorem facilitates calculating the spatial derivative of the scalar flux at the source plane. This quantity is used to trace the lethargy dependence of some peculiarities of the entire spatial distributions given by the B-1 and P-1 approximations. At asymptotically large lethargies, these spatial distributions are obtained explicitly and shown to agree with a well-known accurate expression.