ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Harvey J. Amster
Nuclear Science and Engineering | Volume 34 | Number 3 | December 1968 | Pages 313-327
Technical Paper | doi.org/10.13182/NSE68-A21095
Articles are hosted by Taylor and Francis Online.
This work tests the accuracies of some common approximate methods for calculating spatially dependent neutron slowing down distributions. According to each procedure, an analytic expression for the detailed distribution of neutrons from a plane monoenergetic source in hydrogen is obtained and compared with accurate analytic solutions. Most of the latter are derived here and appear to have other far reaching potential applications. In particular, the exact value and first two lethargy derivatives of the collided angular flux at source lethargy are found in terms of elementary functions of position and angle. These results are used to show that an expression derived by McInerney for the spatial distribution of the scalar flux has, at any given position, only first-order accuracy in powers of lethargy, even though the zeroth and second spatial moments are exact at all lethargies. While the B-1 and P-1 approximations produce poor results at small lethargies, they are accurate at large values; for the errors are due primarily to high-order spatial Fourier components, and these rapidly decay with increasing lethargy. At any lethargy, a Tauberian theorem facilitates calculating the spatial derivative of the scalar flux at the source plane. This quantity is used to trace the lethargy dependence of some peculiarities of the entire spatial distributions given by the B-1 and P-1 approximations. At asymptotically large lethargies, these spatial distributions are obtained explicitly and shown to agree with a well-known accurate expression.