ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
Alan Staub, D. R. Harris, and Mark Goldsmith
Nuclear Science and Engineering | Volume 34 | Number 3 | December 1968 | Pages 263-274
Technical Paper | doi.org/10.13182/NSE68-A21091
Articles are hosted by Taylor and Francis Online.
A group of 11 aqueous critical experiments fueled by 233U and 235U and performed by Gwin and Magnuson have been analyzed to serve as integral tests of nuclear data important in reactor design. Measured eignvalues were corrected for various effects including the presence of the aluminum container, departures from sphericity, delayed-neutron importance, and room return. Eigenvalues were calculated in simplified P-3 approximation using 60 energy groups, and determinations were made of the eigenvalue uncertainties (±0.1%) associated with this treatment. Within the eigenvalue uncertainties (±0.25%) resulting from fuel inventories, it was concluded that fissile nuclide and H(n,γ) cross sections were adequate to match calculations and experiments but that there was evidence of erroneous nuclear data important in determining neutron leakage. In particular, a substantially harder 233U fission neutron spectrum seems to be indicated.