ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Alan Staub, D. R. Harris, and Mark Goldsmith
Nuclear Science and Engineering | Volume 34 | Number 3 | December 1968 | Pages 263-274
Technical Paper | doi.org/10.13182/NSE68-A21091
Articles are hosted by Taylor and Francis Online.
A group of 11 aqueous critical experiments fueled by 233U and 235U and performed by Gwin and Magnuson have been analyzed to serve as integral tests of nuclear data important in reactor design. Measured eignvalues were corrected for various effects including the presence of the aluminum container, departures from sphericity, delayed-neutron importance, and room return. Eigenvalues were calculated in simplified P-3 approximation using 60 energy groups, and determinations were made of the eigenvalue uncertainties (±0.1%) associated with this treatment. Within the eigenvalue uncertainties (±0.25%) resulting from fuel inventories, it was concluded that fissile nuclide and H(n,γ) cross sections were adequate to match calculations and experiments but that there was evidence of erroneous nuclear data important in determining neutron leakage. In particular, a substantially harder 233U fission neutron spectrum seems to be indicated.