ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
A. Fessler, A. J. M. Plompen, D. L. Smith, J. W. Meadows, Y. Ikeda
Nuclear Science and Engineering | Volume 134 | Number 2 | February 2000 | Pages 171-200
Technical Paper | doi.org/10.13182/NSE99-14
Articles are hosted by Taylor and Francis Online.
Cross sections have been measured with the activation technique at various neutron energies in the range of 16.0 to 20.5 MeV for the following 22 reactions: 19F(n,p)19O, 23Na(n,p)23Ne, 23Na(n,)20F, 25Mg(n,p)25Na, 27Al(n,p)27Mg, 28Si(n,p)28Al, 29Si(n,p)29Al, 29Si(n, np + pn + d)28Al, 31P(n,)28Al, 35Cl(n,2n)34mCl, 37Cl(n,p)37S, 46Ti(n,p)46mSc, 50Ti(n,p)50g+mSc, 51V(n,p)51Ti, 55Mn(n,)52V, 56Fe(n,p)56Mn, 57Fe(n, np + pn + d)56Mn, 57Fe(n,p)57Mn, 93Nb(n,)90mY, 93Nb(n,2n)92mNb, 119Sn(n,p)119gIn, and 138Ba(n,2n)137mBa. The half-lives for the reaction products range from 11 s to 10.15 days. Quasi-monoenergetic neutrons were produced via the 3H(d, n)4He reaction. In some cases isotopically enriched materials were used to enhance the reaction yield or to facilitate correction for interfering reactions leading to the same product. The gamma rays emitted from the irradiated samples were measured with a high-purity germanium detector. A pneumatic sample transport system was used to limit the decay of the radioactive products between neutron irradiation and gamma-ray counting. All cross sections were obtained as ratios to the standard reaction 27Al(n,)24Na, using as secondary neutron fluence references the 27Al(n,p)27Mg reaction as well as a calibrated Bonner sphere. Corrections have been applied for sample-irradiation and counting environment geometric effects, neutron absorption and multiple scattering, time variation of neutron-source strength, neutron-source angular distributions, secondary neutrons from the target, gamma-ray absorption, and gamma-ray sum coincidences. A detailed analysis of the uncertainty sources was performed. The present results are compared with other measurements and evaluated data. For seven reactions, measured cross sections have been obtained for the first time beyond 15 MeV. These new data help appreciably to resolve discrepancies in evaluated data files.