ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
J. Appel and B. Roos
Nuclear Science and Engineering | Volume 34 | Number 3 | December 1968 | Pages 201-213
Technical Paper | doi.org/10.13182/NSE68-A21086
Articles are hosted by Taylor and Francis Online.
An exact formulation is presented for the release of metallic fission products. Such radioactive atoms are created through fission processes inside the kernel of fuel particles. They can diffuse through the coating of a fuel particle and the surrounding charcoal matrix into the structural graphite of the reactor core. Some atoms traverse this graphite along internal surfaces and finally enter the coolant gas. To find the number of radioactive atoms released into the coolant gas, the diffusion equation in one space dimension is solved numerically taking into account as driving forces both the gradient of the chemical potential and that of the temperature field. The chemical potential is determined respectively by the Langmuir and Freundlich adsorption isotherms for small and large concentrations of metal atoms adsorbed at the highly active internal surfaces of charcoal and graphite. As an example, a parameter study of the release is presented for the most danagerous radioactive metallic isotope, 90Sr. The calculation of the release rate from a single fuel particle shows that the coating does not act as an effective diffusion barrier in this case. It is found that the structural graphite governs the release by virtue of its good adsorptive properties and its low diffusion constant. The results for the concentration profile, the mass current (or flux), and the release of 90Sr are highly sensitive to experimental information on diffusion and adsorption coefficients, in part because of the temperature-activated nature of adsorption and diffusion processes. Since the experimental variables are known with limited accuracy only, a parameter study of the 90Sr release is carried out, that is centered around the best available empirical values for diffusion and adsorption coefficients.