ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
W. Baer, J. Hardy, Jr., D. Klein, J. J. Volpe, B. L. Palowitch and F. S. Frantz, Jr.
Nuclear Science and Engineering | Volume 23 | Number 4 | December 1965 | Pages 361-367
Technical Paper | doi.org/10.13182/NSE65-A21073
Articles are hosted by Taylor and Francis Online.
Parameter measurements in a 1.3% enriched UO2 lattice with H:U = 0.42 have been performed. These measurements are an extension of an experimental program in the TRX critical facility of the Bettis Atomic Power Laboratory. Earlier measurements were made for a wide range of water-to-uranium (H2O:U) volume ratios (1:1 to 8:1) using 4-ft (1.2-m)-high slightly enriched, 0.387-in. (0.98-cm)-diam uranium metal or oxide fuel rods clad with aluminum. The new data have been compared with current analytic techniques, using both P-1 and P-3 multigroup analysis in the epithermal neutron energy range and Monte Carlo multigroup methods for thermal neutrons. This extremely undermoderated lattice provides a very stringent test for both the computational methods and the neutron cross sections used. The quantities measured were: the ratio of epithermal-to-thermal radiative captures in U238 (ρ28); the ratio of captures in U238 to fissions in U235 (the modified conversion ratio, CR*); the ratio of U238 fisions to U235 fissions (δ28); and the ratio of epithermal-to-thermal U235 fissions (δ25). In addition, activations were obtained with thermal-neutron detectors of widely different spectral response. The results indicate that the calculational methods predict the parameters very well, except for δ28. The discrepancy in δ28 may be due to inadequate U238 inelastic scattering cross sections, but this conclusion requires additional study. Monte Carlo calculations of thermal-neutron detector activations show that use of either the Nelkin or Koppel kernel gives results that agree with the data.