ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
G. Di Cola and A. Rota
Nuclear Science and Engineering | Volume 23 | Number 4 | December 1965 | Pages 344-353
Technical Paper | doi.org/10.13182/NSE65-A21071
Articles are hosted by Taylor and Francis Online.
The use of series expansion methods in treating threshold-detector activation data has been analyzed. Normally the indiscriminate use of detectors having similar responses leads to unstable and ill-conditioned systems. The reasons for these deficiencies are determined and a new method for overcoming them is proposed. To make optimum use of the experimental data in obtaining a solution for the incident neutron spectrum, the series expansions coefficients are obtained through the Gauss method by solving a least-squares problem. A procedure, based on the Monte Carlo method, has been set up to statistically study the effect of experimental input errors on the solution obtained. The most important results indicate that: any set of threshold detectors can be used independent of their cross-section shapes the reliability increases as the number of detectors increases the reliability decreases when the number of series expansion terms increases.