ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
B. Grimeland and G. Seierstad
Nuclear Science and Engineering | Volume 23 | Number 4 | December 1965 | Pages 339-343
Technical Paper | doi.org/10.13182/NSE65-A21070
Articles are hosted by Taylor and Francis Online.
Small crystals of NaI(TI) were exposed to (D, D) neutrons slowed down in a paraffin moderator. The crystals were either enclosed in cadmium or placed inside a small cadmium box filled with the moderator material. The activities induced in iodine at different positions were measured. Now let the normalized activities obtained with the detectors enclosed in cadmium be A1 and let those obtained with the detectors placed inside the cadmium box be A2. It is assumed that the difference A2 − A1 is proportional to q(0.5 eV)-the slowing down density at an energy of 0.5 eV-and from the measured quantities A2(r) and A1(r) the slowing down age has been determined. Bare crystals were also irradiated and the induced activities measured. Let these activities be A3. Then the difference A3 − A1 will give a measure of the density of thermal neutrons and the migration area can be determined. With migration area and slowing down age known, the diffusion length of thermal neutrons could be determined too. The result obtained was L = (2.86 ± 0.16)cm compared to a calculated value of (2.60 ± 0.01)cm. The discrepancy might indicate that the neutron temperature in the paraffin is about 400 °K. Paraffin was used as moderator material because this greatly facilitated the experiment. It is never used as a reactor material and knowledge of the measured quantities may be of minor importance. The method, however, might possibly be of some interest.