ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Firooz Rufeh, Donald R. Olander and Thomas H. Pigford
Nuclear Science and Engineering | Volume 23 | Number 4 | December 1965 | Pages 335-338
Technical Paper | doi.org/10.13182/NSE65-A21069
Articles are hosted by Taylor and Francis Online.
A high-pressure furnace that operates up to 2000°C in the pressure range of 100 atm to 10−5 torr was designed and constructed to saturate UO2 powder of 4-µm average particle size with 4He. The powder was then dissolved in a fused salt in an induction chamber. The released 4He was mixed with a known quantity of 3He, and the mixture was analyzed with a mass spectrometer to determine the 4He: 3He ratio, hence the original mass of 4He in the sample. The solubility of He in UO2 at 1200 and 1300°C was found to be 6.71 × 10−4 and 3.23 × 10−4 cm3 (STP)/(g atm), respectively. It was also found that the He-UO2 system obeys Henry's law. From a plot of He concentration as a function of time, the diffusion coefficient at 1200 °C was estimated to be 1.5 × 10−13 cm2/sec.