ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. H. Brindley
Nuclear Science and Engineering | Volume 23 | Number 4 | December 1965 | Pages 313-328
Technical Paper | doi.org/10.13182/NSE65-A21067
Articles are hosted by Taylor and Francis Online.
Flat-plate fuel-element surface temperatures in the Organic Moderated Reactor Experiment were monitored by 0.005-in. (0.013-cm)-diam chromel-alumel thermocouple wires, spot-welded to the stainless-steel fuel-plate surface. The thermocouple assembly, being exposed to the coolant stream, is subject to thermal-loading errors; as a result, thermocouple-calibration tests were performed in a forced-convection heat-transfer loop with Santowax O-M flowing over an electrically heated test plate containing typical thermocouple specimens. The tests were conducted under the following simulated reactor conditions: coolant temperatures from 300 to 600°F (149 to 316°C), coolant velocities from 10 to 20 ft/sec (3.1 to 6.1 m/sec), and heat fluxes ranging from 0.50 × 105 to 1.6 × 105 Btu/(h ft2) (15.77 to 50.46 W/cm2). Test results demonstrate that at reactor operating conditions, 600 °F organic coolant flowing at 17.5 ft/sec (5.34 m/sec), the observed fuel-plate surface temperature is 700 °F (371 °C), while, in reality, the actual surface temperature is 750 °F (399 °C). The thermocouple thermal-loading errors were found to be a function of the coolant Reynolds and Prandtl numbers. Heat flux had no effect on the calibration. Excellent agreement was obtained between the experimental and predicted (Dittus-Boelter) heat-transfer coefficients for the organic coolant. Thermocouple-calibration factors for correction of observed surface temperatures over a wide range of operating conditions, are presented as a function of the organic-coolant heat-transfer coefficient on the fuel-plate surface. An electrical-analogue model of a thermocouple assembly on the surface of an OMRE fuel element was constructed to: a) verify experimental results; b) study the effect of a fouling film on surface-temperature measurements; and c) provide an inexpensive means of calibrating surface-attached thermocouples on fuel plates for future use. Prediction of thermal-loading errors associated with this type of surface-temperature measurement by the use of existing mathematical results is discussed. Good agreement was obtained between the electrical-analogue results, the analytical predictions, and the experimental data. Film formation on the fuel plate and the thermocouple wire was observed to reduce the thermocouple-calibration factor by as much as 45%.