ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
Harvey Amster
Nuclear Science and Engineering | Volume 21 | Number 2 | February 1965 | Pages 206-216
Technical Paper | doi.org/10.13182/NSE65-A21045
Articles are hosted by Taylor and Francis Online.
The spatially-independent spectrum of neutrons slowing down in an infinite medium with constant cross sections is calculated from both the Laplace transform exactitude (LTE) and a generalized synethtic kernel approximation (SKA). The fluxes are expressed as sums of exponentials in lethargy and compared asymptotically. For hydrogenous mixtures, two of an infinite number of terms from the LTE are non-oscillatory, both dominate all others at large lethargies, and one vanishes whenever hydrogen is a sole or missing constituent. The SKA yields a solution consisting of as many exponentials as isotopes present. The longest-lived terms are generally most accurate, but even the dominant one can be exact only if there is no absorption or if hydrogen is the sole moderator. For binary mixtures, both terms in the SKA fluxes are non-oscillatory, and the secondary one vanishes for the same concentrations that make the corresponding term in the LTE vanish. Analytic expressions for errors in the asymptotic flux from the SKAs are given as a function of lethargy, all the cross sections, and masses. For every instance observed, the exact asymptotic flux is bounded on different sides by values from the Greuling-Goertzel and Selengut-Goertzel SKAs.