ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Hongyu Zhou, Xinfu Wang, Chao Wang, Ming Hua, Guangshun Huang, Guoying Fan, Ting Lu, Siqing Bartel
Nuclear Science and Engineering | Volume 134 | Number 1 | January 2000 | Pages 106-113
Technical Note | doi.org/10.13182/NSE00-A2104
Articles are hosted by Taylor and Francis Online.
The gamma radiation in the interaction of 14.9-MeV neutrons with a natural lead sample is investigated by the total gamma radiation measurement technique (TGRM). Forty-nine prompt gamma lines and 8 delayed gamma lines, which come from (n,n') and (n,2n) reactions of 206Pb, 207Pb, and 208Pb, are identified, and their differential production cross sections at 55, 90, and 140 deg are determined. Six mixed gamma-ray peaks are separated, and the production data of the prompt and delayed components are given separately. The production cross sections of three isomeric states (1013.7 keV, (13/2)+, 5.5 ms in 205mPb; 2200.2 keV, 7-, 124s in 206mPb; and 1633.3 keV, (13/2)+, 0.81s in 207mPb) are accurately determined. They are in good agreement with some recent experimental and theoretical results. This is the most successful example of applying TGRM in an (n,x) experimental study following after the aluminum study.