ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Mildred J. Bradley, Jerry H. Goode, Leslie M. Ferris, James R. Flanary and Jacob W. Ullmann
Nuclear Science and Engineering | Volume 21 | Number 2 | February 1965 | Pages 159-164
Technical Paper | doi.org/10.13182/NSE65-A21039
Articles are hosted by Taylor and Francis Online.
Reactor irradiation of uranium monocarbide (UC) caused pronounced effects on its reactions with water and with aqueous solutions of NaOH, HCl, and H2SO4. Specimens irradiated to a burnup of 0.6 at.% or higher were essentially inert to water and to 6 M NaOH at 80°C. When the burnup was 0.06 at.% the specimens hydrolyzed, but the rates were much lower than those obtained with unirradiated specimens. The irradiation had little effect on the rates of reaction with HCl and H2SO4. When hydrolysis of irradiated UC occurred in water, 6 M NaOH, 6 M HCl, or 6 M H2SO4, the gases evolved contained less methane, less total volatile hydrocarbons and more hydrogen than the gases evolved from unirradiated UC under the same conditions. In general, with increasing burnup of the UC, the amount of hydrogen evolved increased while the amounts of methane and total carbon recovered in the gas decreased.