ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Mildred J. Bradley, Jerry H. Goode, Leslie M. Ferris, James R. Flanary and Jacob W. Ullmann
Nuclear Science and Engineering | Volume 21 | Number 2 | February 1965 | Pages 159-164
Technical Paper | doi.org/10.13182/NSE65-A21039
Articles are hosted by Taylor and Francis Online.
Reactor irradiation of uranium monocarbide (UC) caused pronounced effects on its reactions with water and with aqueous solutions of NaOH, HCl, and H2SO4. Specimens irradiated to a burnup of 0.6 at.% or higher were essentially inert to water and to 6 M NaOH at 80°C. When the burnup was 0.06 at.% the specimens hydrolyzed, but the rates were much lower than those obtained with unirradiated specimens. The irradiation had little effect on the rates of reaction with HCl and H2SO4. When hydrolysis of irradiated UC occurred in water, 6 M NaOH, 6 M HCl, or 6 M H2SO4, the gases evolved contained less methane, less total volatile hydrocarbons and more hydrogen than the gases evolved from unirradiated UC under the same conditions. In general, with increasing burnup of the UC, the amount of hydrogen evolved increased while the amounts of methane and total carbon recovered in the gas decreased.