ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
Mildred J. Bradley, Jerry H. Goode, Leslie M. Ferris, James R. Flanary and Jacob W. Ullmann
Nuclear Science and Engineering | Volume 21 | Number 2 | February 1965 | Pages 159-164
Technical Paper | doi.org/10.13182/NSE65-A21039
Articles are hosted by Taylor and Francis Online.
Reactor irradiation of uranium monocarbide (UC) caused pronounced effects on its reactions with water and with aqueous solutions of NaOH, HCl, and H2SO4. Specimens irradiated to a burnup of 0.6 at.% or higher were essentially inert to water and to 6 M NaOH at 80°C. When the burnup was 0.06 at.% the specimens hydrolyzed, but the rates were much lower than those obtained with unirradiated specimens. The irradiation had little effect on the rates of reaction with HCl and H2SO4. When hydrolysis of irradiated UC occurred in water, 6 M NaOH, 6 M HCl, or 6 M H2SO4, the gases evolved contained less methane, less total volatile hydrocarbons and more hydrogen than the gases evolved from unirradiated UC under the same conditions. In general, with increasing burnup of the UC, the amount of hydrogen evolved increased while the amounts of methane and total carbon recovered in the gas decreased.