ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
G. C. Pomraning
Nuclear Science and Engineering | Volume 21 | Number 1 | January 1965 | Pages 62-78
Technical Paper | doi.org/10.13182/NSE65-A21016
Articles are hosted by Taylor and Francis Online.
A diffusion theory for the asymptotic transport scalar flux is derived from the monoenergetic transport equation in slab geometry. By allowing the scalar flux to be discontinuous at a material property and/or an external-source discontinuity, the theory is able to predict exact asymptotic transport-theory behavior for two standard halfspace problems. A supplementary diffusion-like theory is developed to treat the non-asymptotic flux. The total (asymptotic plus non-asymptotic) formalism yields a continuous scalar flux distribution and gives exact transport -theory leakage from a halfspace with a spatially-constant source. Numerous numerical comparisons indicate that the theory proposed here is significantly more accurate than classical (P1) diffusion theory. The complexity of both the asymptotic and non-asymptotic formalisms is comparable with that of the P1 method. Finally, the entire formalism is generalized to three dimensions in rectilinear- and curvilinear-coordinate systems.