ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
John P. Church
Nuclear Science and Engineering | Volume 21 | Number 1 | January 1965 | Pages 49-61
Technical Paper | doi.org/10.13182/NSE65-A21015
Articles are hosted by Taylor and Francis Online.
The integral neutron-transport equation is solved for the space-dependent mono-energetic neutron density in a unit cell. By using step functions to represent the spatial dependence of the collision probabilities, one may rearrange the integro-differential transport equation in a special way such that the left-hand side contains only the leakage term and the term describing the total collision probability for the homogeneous medium of one region, k′, of the original problem. The Green's-function technique is then used to convert the integro-differential equation to an integral equation. Thus, although the resulting equation may be applied to a heterogeneous cell, the kernel of the equation depends only on the total collision probability in the particular region k′. Numerical results are presented for a two-region unit cell in slab geometry and compared with published results of DSN, PN double-PN and variational calculations. For unit cells that are of the order of two mean free paths or less in thickness, the zeroth-order spherical harmonic approximation for this method yields results comparable to very high order DSN, PN and double-PN calculations. Further, once the Green's function has been computed, additional cell calculations can be performed with relatively little additional computational effort.