In the work previously reported, the solution to the problem of minimizing boiling reactor noise through external control was based on the work of the late Norbert Wiener. There are, however, serious drawbacks in applying Wiener theory. The mathematical sophistication and algebraic complexity greatly increase as more realistic and complex models are assumed for the reactor. Physical intuition is lost among the numerous digital calculations required for complex systems. In this paper a new graphical technique is used to determine an optimum reactor control system that will minimize boiling reactor noise. This technique practically eliminates these serious drawbacks and permits a considerable physical insight into the basic structural properties of optimum control systems to minimize reactor noise. Contrary to previous results, it was found that a reactor control system independent of reactor power level except for a gain constant could be designed that would minimize boiling noise at all power levels. This, in effect, eliminates the need for a complex adaptive control system to account for the dependency of the optimum reactor control system on reactor power level. Simulation studies verified these findings.