ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Gary J. Dau, Monte V. Davis
Nuclear Science and Engineering | Volume 21 | Number 1 | January 1965 | Pages 30-33
Technical Paper | doi.org/10.13182/NSE65-A21012
Articles are hosted by Taylor and Francis Online.
The electrical conductivity of an 0.085 cm-thick layer of flame-sprayed alumina was examined as a function of temperature and of the specific power of an operating nuclear reactor. It was determined that the electrical conductivity of the alumina can be expressed as The first term on the right is the normal expression for ionic conductivity as a function of temperature. The second term accounts for the impurity conduction in the insulator and the third term assumes an ionized material in which Rutherford scattering plays a dominant role in the mobility of the electron-hole pairs created by photon interactions in the alumina. The assumption of electronic conductivity, a temperature-dependent mobility varying as T3/2, and a density of charge carriers proportional to the reactor specific power P is seen to hold over a temperature range up to 1300°K and up to reactor specific powers to 6 kW liter. An extrapolation of the results to higher specific powers shows the conductivity of Al2O3 adequate for nuclear thermionic systems.