ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TVA nominees promise to support advanced reactor development
Four nominees to serve on the Tennessee Valley Authority Board of Directors told the Senate Environment and Public Works Committee that they support the build-out of new advanced nuclear reactors to meet the increased energy demand being shouldered by the country’s largest public utility.
Jeffrey Lewins
Nuclear Science and Engineering | Volume 20 | Number 4 | December 1964 | Pages 517-520
Technical Paper | doi.org/10.13182/NSE64-A20994
Articles are hosted by Taylor and Francis Online.
Two variational principles are discussed for time-dependent problems in reactor physics. The first is a stationary expression for the meter reading at a given time, the second a stationary expression for the integral of the meter reading up to a given time. Both the principles, unlike conventional Lagrangians extended to time-dependent nonconservative systems, have the advantage of requiring trial functions to be exact only at one end of the time interval of interest. Either may be generalized to account for nonlinearities. The second principle reduces to the first by making a suitable identification, while the first principle in turn reduces to a well-known and powerful variational principle for the steady state.