ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Richard E. Kaiser, William R. Kimel
Nuclear Science and Engineering | Volume 20 | Number 4 | December 1964 | Pages 468-475
Technical Paper | doi.org/10.13182/NSE64-A20989
Articles are hosted by Taylor and Francis Online.
Several methods are available for the determination of thermal diffusion length. In general, those based on one-group diffusion theory are subject to the assumption of a particular source boundary condition. Errors introduced by the assumption of such boundary conditions usually result in incorrect prediction of the relative harmonic content of the thermal flux at different elevations in the pile. The effect of these errors on diffusion-length determination is to cause inconsistency in the results as additional data points taken close to the source are included. A method is presented whereby the constants Amn in the one-group thermal-flux equation are determined experimentally and used in the determination of diffusion length. This method is then compared with other methods using one-group and age-diffusion theory with respect to the consistency of results obtained.