ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
Richard E. Kaiser, William R. Kimel
Nuclear Science and Engineering | Volume 20 | Number 4 | December 1964 | Pages 468-475
Technical Paper | doi.org/10.13182/NSE64-A20989
Articles are hosted by Taylor and Francis Online.
Several methods are available for the determination of thermal diffusion length. In general, those based on one-group diffusion theory are subject to the assumption of a particular source boundary condition. Errors introduced by the assumption of such boundary conditions usually result in incorrect prediction of the relative harmonic content of the thermal flux at different elevations in the pile. The effect of these errors on diffusion-length determination is to cause inconsistency in the results as additional data points taken close to the source are included. A method is presented whereby the constants Amn in the one-group thermal-flux equation are determined experimentally and used in the determination of diffusion length. This method is then compared with other methods using one-group and age-diffusion theory with respect to the consistency of results obtained.