ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Travelli, Gerald P. Calame
Nuclear Science and Engineering | Volume 20 | Number 4 | December 1964 | Pages 414-427
Technical Paper | doi.org/10.13182/NSE64-A20983
Articles are hosted by Taylor and Francis Online.
The thermal neutron space-time eigenvalue spectrum of the multigroup PN approximation is investigated numerically for a modified form of the Radkowsky Kernel. Both discrete eigenvalues and eigenvalues that are assigned to a ‘continuum region,’ on the grounds that the corresponding eigenvectors exhibit singularities, are found. The continuum region so defined agrees well with that expected for the Boltzmann Equation. It is found that, when λ, the time decay constant, is plotted vs B2, the square of the geometrical buckling, there is in the PN approximation a critical value beyond which no real eigenvalues λ exist. The value of is sensitive to the order of the PN approximation, increasing with increasing N. It is conjectured that corresponds, when the extrapolated endpoint is considered, to a slab of zero thickness through which a burst of neutrons would pass undisturbed as an ideal travelling wave.