ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
David J. Loaiza, F. Eric Haskin
Nuclear Science and Engineering | Volume 134 | Number 1 | January 2000 | Pages 22-36
Technical Paper | doi.org/10.13182/NSE00-A2097
Articles are hosted by Taylor and Francis Online.
The product of cumulative yield and probability of neutron emission is used to assess the relative importance of known delayed neutron precursors. Thirteen precursors are consistently dominant. Nonlinear fits to experimental delayed neutron decay data distinguish the decay constants of the three longest-lived dominant precursors: 87Br, 137I, and 88Br. Sensitivity calculations based on a six- to seven- group transformation lead to a proposed seven-group formulation in which the group decay constants are those of dominant precursors: 87Br, 137I, 88Br, 93Rb, 139I, 91Br, and 96Rb. An alternative six-group formulation is obtained by using the mean of the 137I and 88Br decay constants for group 2. The use of the suggested dominant precursor decay constants improves the goodness of fit to experimental data compared to that obtained from nonlinear least squares in which both group yields and decay constants are determined empirically. Reactivity worth and transient analyses confirm that the positive reactivity scale is preserved in the transformation. A known bias in the negative reactivity scale is eliminated by forcing the half-life of the longest-lived group to be the 55.9-s half-life of 87Br. The proposed use of dominant precursor decay constants offers significant simplifications in data analysis and the analysis of fast, epithermal, and thermal reactors with multiple fissioning nuclides.