ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
José Canosa
Nuclear Science and Engineering | Volume 19 | Number 3 | July 1964 | Pages 329-342
Technical Paper | doi.org/10.13182/NSE19-03-329
Articles are hosted by Taylor and Francis Online.
The problem of adiabatic excursions in a reactor is studied in general. We let the prompt temperature reactivity feedback be an unspecified function of temperature, ρ = ρ0 = ρ0 + f(T), where ρ is total reactivity, ρ0 initial step reactivity and f(T) the feedback function. The similarity of the behavior of the reactor for different f(T) is established by means of a topological (qualitative) analysis. A quantitative asymptotic solution of the non-linear system of DE describing the reactor is presented. In delayed critical excursions, the delayed neutrons play a determining role. In the first part of a prompt excursion, the delayed-neutron source is nil; however this is not so in the second part, where it contributes appreciably to the excursion. These conclusions are shown to be valid in general, and allow us to write down almost directly the (approximate) quantitative solution of the non-linear system for any f(T). These results are correlated with the experimental data for the adiabatic excursions of a UO2 core in SPERT I; in this case the (prompt) dependence of the reactivity on energy is of the form ρ = ρ0 - 4.588 × 10-4E0.74.