ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
José Canosa
Nuclear Science and Engineering | Volume 19 | Number 3 | July 1964 | Pages 329-342
Technical Paper | doi.org/10.13182/NSE19-03-329
Articles are hosted by Taylor and Francis Online.
The problem of adiabatic excursions in a reactor is studied in general. We let the prompt temperature reactivity feedback be an unspecified function of temperature, ρ = ρ0 = ρ0 + f(T), where ρ is total reactivity, ρ0 initial step reactivity and f(T) the feedback function. The similarity of the behavior of the reactor for different f(T) is established by means of a topological (qualitative) analysis. A quantitative asymptotic solution of the non-linear system of DE describing the reactor is presented. In delayed critical excursions, the delayed neutrons play a determining role. In the first part of a prompt excursion, the delayed-neutron source is nil; however this is not so in the second part, where it contributes appreciably to the excursion. These conclusions are shown to be valid in general, and allow us to write down almost directly the (approximate) quantitative solution of the non-linear system for any f(T). These results are correlated with the experimental data for the adiabatic excursions of a UO2 core in SPERT I; in this case the (prompt) dependence of the reactivity on energy is of the form ρ = ρ0 - 4.588 × 10-4E0.74.