ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Moltex demonstrates its WATSS fuel recycling process
Advanced reactor company Moltex Energy Canada said it has successfully validated its waste to stable salt (WATSS) process on used nuclear fuel bundles from an unnamed Canadian commercial reactor through hot cell experiments conducted by Canadian Nuclear Laboratories.
A. E. Profio, J. D. Eckard
Nuclear Science and Engineering | Volume 19 | Number 3 | July 1964 | Pages 321-328
Technical Paper | doi.org/10.13182/NSE64-A20965
Articles are hosted by Taylor and Francis Online.
The slowing-down times in water, toluene, and heavy water were obtained from measurements of capture-gamma-ray counting rates as a function of time after injection of a neutron burst. The times to the 1.46-eV resonance in indium were 0.75 ± 0.5 μsec, 1.5 ± 0.3 μsec, and 4.0 ± 1.0 μsec for the three moderators. The corresponding times to a 0.4-eV energy in cadmium were 1.75 ± 0.5 μsec, 3.25 ± 0.3 μsec, and 10.5 ± 1.0 μsec, respectively. Time-gated pulse-height spectra measurements in a large liquid scintillation detector were made to separate fast- from thermal-neutron interactions by taking advantage of slowing-down-time spectrometry. Steady-state pulse-height spectra measurements in water and in water plus indium illustrated the application of prompt-gamma-ray analysis to determination of capture rates.