ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
A. E. Profio, J. D. Eckard
Nuclear Science and Engineering | Volume 19 | Number 3 | July 1964 | Pages 321-328
Technical Paper | doi.org/10.13182/NSE64-A20965
Articles are hosted by Taylor and Francis Online.
The slowing-down times in water, toluene, and heavy water were obtained from measurements of capture-gamma-ray counting rates as a function of time after injection of a neutron burst. The times to the 1.46-eV resonance in indium were 0.75 ± 0.5 μsec, 1.5 ± 0.3 μsec, and 4.0 ± 1.0 μsec for the three moderators. The corresponding times to a 0.4-eV energy in cadmium were 1.75 ± 0.5 μsec, 3.25 ± 0.3 μsec, and 10.5 ± 1.0 μsec, respectively. Time-gated pulse-height spectra measurements in a large liquid scintillation detector were made to separate fast- from thermal-neutron interactions by taking advantage of slowing-down-time spectrometry. Steady-state pulse-height spectra measurements in water and in water plus indium illustrated the application of prompt-gamma-ray analysis to determination of capture rates.