ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
Bernard W. Shaffer
Nuclear Science and Engineering | Volume 19 | Number 3 | July 1964 | Pages 300-309
Technical Paper | doi.org/10.13182/NSE64-A20963
Articles are hosted by Taylor and Francis Online.
Thermal stress and displacement equations are derived for an internally clad tube for which the ratio of cladding thickness to internal tube radius is small with respect to unity and in which the cladding and the basic tube have different material properties. When the difference between the cladding temperature and the average temperature of the basic tube is large enough, plastic flow is found to occur in the cladding. The corresponding solution is found by making use of the Tresca yield condition and its associated flow law. The solution is examined to guide the designer in the selection of those cladding material properties that would delay the initiation of plastic flow.