ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
W. L. Pearl, G. G. Gaul, G. P. Wozadlo
Nuclear Science and Engineering | Volume 19 | Number 3 | July 1964 | Pages 274-295
Technical Paper | doi.org/10.13182/NSE64-A20961
Articles are hosted by Taylor and Francis Online.
A program was instituted to study and reproduce the in-reactor intergranular failures of Type-304 stainless steel fuel cladding found in superheated steam. The program was directed toward finding ways to eliminate the cause of failure or to use improved alloys that would be less susceptible to failure. A materials screening test was developed in the out-of-pile superheat facilities with 1.5 parts/106 chloride added as sodium chloride to the recirculating water in the presence of typical boiling-water-reactor quantities of oxygen and hydrogen. During the test, the heater sheaths were exposed through several cycles to saturated steam (with its accompanying moisture carryover) and superheated steam. Failure of Type-304 stainless steel was obtained in periods of less than two weeks; the failures were predominantly transgranular. Type-347 and vacuum-melted Type-304 stainless steels failed in this NaCl-cycle test while Inconel-600, Incoloy-800, Hastelloy-X, Type-406 stainless steel, and vacuum-melted Type-310 stainless steel were acceptable. An improved chloride cycle test utilizing 0.5 parts/106 chloride added as ferric chloride to the recirculating water was developed. An intergranular failure was obtained similar to that experienced in the superheat fuel cladding failures in the superheat in-pile loops in the Vallecitos Boiling Water Reactor. Sensitized Type-304 and Type-316 stainless steels failed intergranularly in this test. Inconel-600, Incoloy-800, and vacuum-melted Type-310 stainless steel did not fail when exposed to the test for much longer times. During the development and performance of the cycle runs, the superheat facilities were exposed to a myriad of conditions within the extremes of the test parameters involved. Intergranular chemical attack was experienced essentially independent of stress, but the attack was generally distributed. In the presence of high stress, the intergranular attack was more localized and advanced normal to the stress. This suggests that a definite interplay exists between chemical attack and stress, and that the application of the stress increases the rate of the intergranular attack preferentially in a direction perpendicular to the stress.