ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K., Japan to extend decommissioning partnership
The U.K.’s Sellafield Ltd. and Japan’s Tokyo Electric Power Company have pledge to continue to work together for up to an additional 10 years, extending a cooperative agreement begun in 2014 following the 2011 tsunami that resulted in the irreparable damage of TEPCO’s Fukushima Daiichi plant.
André Mackel
Nuclear Science and Engineering | Volume 22 | Number 3 | July 1965 | Pages 339-349
Technical Paper | doi.org/10.13182/NSE65-A20938
Articles are hosted by Taylor and Francis Online.
Reflection and transmission of monoenergetical particles with a known ingoing distribution by a strongly absorbing slab is studied from the numerical standpoint. Various approximation methods based on known theoretical solutions are presented: in section III we propose an approximation based on Chandrasekhar X and Y functions; in section IV we obtain the reflection and transmission by using a variational technique, and we show that a successive-collision technique gives identical results; and in section V we propose a diffusion-like approximation, with adjusted coefficients, of the form The first approximation gives good results for low c values; the second one, for high c values. The diffusion-like approximation, however, is accurate to more than 2% for all values of c between 0.1 and 0.9. Moreover it is far easier to compute than any of the former ones.