ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
G. E. Hansen and H. A. Sandmeier
Nuclear Science and Engineering | Volume 22 | Number 3 | July 1965 | Pages 315-320
Technical Paper | doi.org/10.13182/NSE65-A20935
Articles are hosted by Taylor and Francis Online.
Adjoint transport theory is most widely used in perturbation theory. A most common problem here is the determination of the reactivity change in a self-multiplying system due to the insertion of an absorber in a small region. There is, however, a class of problems of the source-detector type where adjoint transport theory proves to be a very effective and fast way of obtaining the desired results. In many practical source problems we want to evaluate the reaction rate, say fissions or absorptions, in a material surrounded by a moderator due to a neutron flux incident on the assembly. Here the main advantage of using the adjoint method as opposed to the conventional real-flux shell-source calculations is a significant reduction in computer time. The reactions induced by each group of source neutrons is obtained from one run of an adjoint problem. To obtain the same information from real-flux calculations we need an individual run for every energy group g. Computer time savings ranging by a factor of 5 to 30 are representative. The theory previously reported by one of us (H.A.S.) in the classified literature is derived and subsequently applied to the following problems. a. the fissions induced in a spherical plutonium-detector foil separated by a moderating layer from an incident collimated neutron beam; b. a neutron-dose-rate detector device consisting of a lithium iodide crystal to register absorptions surrounded by a sphere of polyethylene; c. the theoretical evaluation of the neutronic coupling coefficient between two reactors, as one might visualize in a clustered-Rover nuclear-reactor rocket-engine system.