ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
G. E. Hansen and H. A. Sandmeier
Nuclear Science and Engineering | Volume 22 | Number 3 | July 1965 | Pages 315-320
Technical Paper | doi.org/10.13182/NSE65-A20935
Articles are hosted by Taylor and Francis Online.
Adjoint transport theory is most widely used in perturbation theory. A most common problem here is the determination of the reactivity change in a self-multiplying system due to the insertion of an absorber in a small region. There is, however, a class of problems of the source-detector type where adjoint transport theory proves to be a very effective and fast way of obtaining the desired results. In many practical source problems we want to evaluate the reaction rate, say fissions or absorptions, in a material surrounded by a moderator due to a neutron flux incident on the assembly. Here the main advantage of using the adjoint method as opposed to the conventional real-flux shell-source calculations is a significant reduction in computer time. The reactions induced by each group of source neutrons is obtained from one run of an adjoint problem. To obtain the same information from real-flux calculations we need an individual run for every energy group g. Computer time savings ranging by a factor of 5 to 30 are representative. The theory previously reported by one of us (H.A.S.) in the classified literature is derived and subsequently applied to the following problems. a. the fissions induced in a spherical plutonium-detector foil separated by a moderating layer from an incident collimated neutron beam; b. a neutron-dose-rate detector device consisting of a lithium iodide crystal to register absorptions surrounded by a sphere of polyethylene; c. the theoretical evaluation of the neutronic coupling coefficient between two reactors, as one might visualize in a clustered-Rover nuclear-reactor rocket-engine system.