ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Ian Wall and Henri Fenech
Nuclear Science and Engineering | Volume 22 | Number 3 | July 1965 | Pages 285-297
Technical Paper | doi.org/10.13182/NSE65-A20933
Articles are hosted by Taylor and Francis Online.
The fuel management optimization of a nuclear power plant is separable from the over-all optimum design. It has weak interactions with the core design and poison management which may be expressed by constraints upon the maximum permissible fuel burnup and ratio of peak-to-average power density (power peaking). Each time the reactor becomes subcritical, a decision must be made as to which fuel should be discharged and replaced and to what degree rearrangement is advantageous. This is a multistage decision process whose objective is the minimum power cost over the plant life. A dynamic programing algorithm and a computer program have been developed to optimize the refueling policies of a single-enrichment, three-zone, 1000-MWe PWR core for a minimum unit power cost. The major assumptions necessary for this method are the representation of the fuel composition by the sole parameter, burnup, and the prediction of the system behavior by least-squares polynomial curves fitted to prior calculations. These approximations have been verified and their accuracy is about 3%. Many problems are displayed to demonstrate the application of the method. The cost figures given in the numerical examples are for illustration purposes only and may not reflect current manufacturers' and utilities' policies.