ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Masahide Imasaki and Torao Yanaru
Nuclear Science and Engineering | Volume 33 | Number 1 | July 1968 | Pages 93-105
Technical Paper | doi.org/10.13182/NSE68-A20921
Articles are hosted by Taylor and Francis Online.
The stability of flux-shaped spatial modes is studied in a Calder Hall type reactor in three dimensions using the homogeneous boundary condition of the reactivity with the following three results: 1) the modal interaction due to coolant flow is also a second-order term in the three-dimensional modal analysis and can be ignored as the first approximation; 2) the Nyquist criterion should be applied to the expression containing the involved transcendental function in the transfer function of the thermal system; and 3) the simple thermal model, which treats only the fuel, moderator, and coolant, is adequate to judge the stability of the mode. The effects of flattening the radius on the threshold value of the moderator reactivity temperature coefficient and on the period of the sustained oscillation have been studied by this method as a function of the eigenvalue, and it has been shown that: 1) the modes with the same order in axial and radial direction form a group; and 2) the modes with the second order in axial direction are more stable than the modes with the first order in axial direction.