ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
O. K. Harling
Nuclear Science and Engineering | Volume 33 | Number 1 | July 1968 | Pages 41-50
Technical Paper | doi.org/10.13182/NSE68-A20916
Articles are hosted by Taylor and Francis Online.
The results of an extensive slow-neutron inelastic scattering study of heavy water at 299°K are reported. High-energy resolution measurements were made on thin D2O samples to obtain the double-differential scattering cross sections for energy transfers to 7 kT and momentum transfers to 9.5 Å−1. A spectral density for the modes of motion in D2O has been obtained by an extrapolation technique. Experimental results are presented in the form of the Egelstaff scattering function and are compared with calculations based on the McMurry-Russell modification of the Nelkin model for water and the Egelstaff-Schofield theory for an incoherent scatterer with a Gaussian self-correlation function.