ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
A. dos Santos, H. Pasqualeto, L. C. C. B. Fanaro, R. Fuga, R. Jerez
Nuclear Science and Engineering | Volume 133 | Number 3 | November 1999 | Pages 314-326
Technical Paper | doi.org/10.13182/NSE99-A2091
Articles are hosted by Taylor and Francis Online.
A new experimental quantity is presented to serve as a benchmark to verify the adequacy of the newly released 235U thermal and subthermal cross sections for the determination of the reactivity coefficients of light water reactors. Such a quantity is denominated the inversion point, and by definition it is the temperature for which the isothermal reactivity coefficient of a reactor system becomes positive. The experimental bases for its determination are discussed. The experiment has been performed in the IPEN/MB-01 reactor facility. Instead of heating the reactor system as usual in experiments considering temperature variations, the reactor system is cooled to ~8.5°C. By means of a heating/cooling system, the temperature is allowed to increase slowly in a stepwise manner. For each step, the control bank critical position is recorded, and by analyzing its behavior as a function of temperature, the inversion point is inferred. The inversion point has been found to be an adequate experimental quantity to validate the thermal and subthermal 235U cross section because it does not require any sort of calculated correction factors or any quantity that comes either from the calculational methodologies or from another experiment. In addition, the inversion point is an experimental quantity that can be measured with an excellent level of accuracy due mainly to the very precise characteristics of the control bank system of the IPEN/ MB-01 reactor. The final value obtained for the IPEN/MB-01 reactor is 14.99 ± 0.15°C.