ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
Herbert Henryson, II, David S. Selengut
Nuclear Science and Engineering | Volume 37 | Number 1 | July 1969 | Pages 1-18
Technical Paper | doi.org/10.13182/NSE69-A20894
Articles are hosted by Taylor and Francis Online.
An approximate formalism is derived for solving problems in the one-velocity transport of neutrons in convex, isotropically scattering media. The integral transport equation is transformed to an equivalent infinite medium problem to which the synthetic kernel method may be applied. It is then shown that the neutron flux may be approximated by the solution of a set of coupled-diffusion type differential equations. These equations and their related boundary conditions are of the same form as the few-group diffusion equations so that solution may be obtained by use of existing multidimensional computer codes. Finally, the new formalism is applied to a number of simplified, though realistic, problems and the results are compared with corresponding results provided either by rigorous treatment or by other approximate theories. In general, the accuracy of the formalism and the computational effort required are comparable with the simplified spherical harmonics method. In addition, the flexibility available in choosing the parameters of the synthetic kernel offers the possibility of tailoring kernels to specific design problems.