ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Weston M. Stacey, Jr.
Nuclear Science and Engineering | Volume 45 | Number 2 | August 1971 | Pages 189-198
Technical Paper | doi.org/10.13182/NSE71-A20885
Articles are hosted by Taylor and Francis Online.
A method is described for solving the energy-dependent neutron diffusion equation by first factorizing the flux into a spatial shape function with weak energy dependence and a spectral function, then developing coupled equations for these two functions which must be solved iteratively. Numerical procedures used to solve these equations combine internally, and in a self-consistent fashion, a fine-group spectrum calculation with a broad-group spatial calculation. Numerical examples, based on representative fast-reactor models, are presented to demonstrate that this space-energy factorization method constitutes an accurate and economical approximation.