ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
Paul J. Turinsky, James J. Duderstadt
Nuclear Science and Engineering | Volume 45 | Number 2 | August 1971 | Pages 167-181
Technical Paper | doi.org/10.13182/NSE71-A20883
Articles are hosted by Taylor and Francis Online.
Several applications of the degenerate kernel technique (DKT) for treating the speed dependence in steady-state neutron thermalization calculations are studied both analytically and computationally. An iterative improvement technique is developed for fine thermal spectrum calculations. It is shown that the size of the degenerate kernel expansion (DKE) required to obtain consistent accuracy with a given number of discrete speed mesh points can be decoupled from the speed mesh structure by such a technique. This decoupling allows a more efficient numerical solution and hence a savings in computation time. The solution of the integral transport equation within the isotropic scattering approximation is also studied within the DKT framework. The DKT formalism allows a considerable reduction in the dimensionality of the numerical representation of this problem, hence implying reduced computation costs. Finally, the DKE has been employed within the invariant-imbedding transport formalism to calculate the reflection (R) and transmission (T) probabilities for thermal neutrons incident upon a slab. Once again the DKT leads to a very considerable reduction in computation time and storage when compared with multigroup approaches. Numerical methods for solving the invariant imbedding-DKT equations for R and T have been developed and computationally verified as both accurate and efficient.