ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Ulrich Grundmann, Frank Hollstein
Nuclear Science and Engineering | Volume 133 | Number 2 | October 1999 | Pages 201-212
Technical Paper | doi.org/10.13182/NSE99-A2082
Articles are hosted by Taylor and Francis Online.
A new nodal method HEXNEM2 for hexagonal geometry is described. The method is based on a two-dimensional expansion of the intranodal fluxes. Polynomials up to the second order and exponential functions are used in each group. By this method, the singular terms occurring in the transverse integration methods are avoided. Side-averaged and corner-point values of fluxes and currents are used for the coupling of nodes. A calculation scheme for the outgoing partial currents at the sides and similar expressions for the corners from given incoming values are used in the inner iteration, which gives a fast-running scheme. The method is tested against two-dimensional hexagonal benchmark problems for the VVER-type reactors. The results show that the multiplication factor and nodal powers are predicted accurately. A considerable improvement can be shown in the results for the VVER-1000 benchmarks compared with the method developed previously for the code DYN3D and the simpler method HEXNEM1.