ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Ulrich Grundmann, Frank Hollstein
Nuclear Science and Engineering | Volume 133 | Number 2 | October 1999 | Pages 201-212
Technical Paper | doi.org/10.13182/NSE99-A2082
Articles are hosted by Taylor and Francis Online.
A new nodal method HEXNEM2 for hexagonal geometry is described. The method is based on a two-dimensional expansion of the intranodal fluxes. Polynomials up to the second order and exponential functions are used in each group. By this method, the singular terms occurring in the transverse integration methods are avoided. Side-averaged and corner-point values of fluxes and currents are used for the coupling of nodes. A calculation scheme for the outgoing partial currents at the sides and similar expressions for the corners from given incoming values are used in the inner iteration, which gives a fast-running scheme. The method is tested against two-dimensional hexagonal benchmark problems for the VVER-type reactors. The results show that the multiplication factor and nodal powers are predicted accurately. A considerable improvement can be shown in the results for the VVER-1000 benchmarks compared with the method developed previously for the code DYN3D and the simpler method HEXNEM1.