ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Ulrich Grundmann, Frank Hollstein
Nuclear Science and Engineering | Volume 133 | Number 2 | October 1999 | Pages 201-212
Technical Paper | doi.org/10.13182/NSE99-A2082
Articles are hosted by Taylor and Francis Online.
A new nodal method HEXNEM2 for hexagonal geometry is described. The method is based on a two-dimensional expansion of the intranodal fluxes. Polynomials up to the second order and exponential functions are used in each group. By this method, the singular terms occurring in the transverse integration methods are avoided. Side-averaged and corner-point values of fluxes and currents are used for the coupling of nodes. A calculation scheme for the outgoing partial currents at the sides and similar expressions for the corners from given incoming values are used in the inner iteration, which gives a fast-running scheme. The method is tested against two-dimensional hexagonal benchmark problems for the VVER-type reactors. The results show that the multiplication factor and nodal powers are predicted accurately. A considerable improvement can be shown in the results for the VVER-1000 benchmarks compared with the method developed previously for the code DYN3D and the simpler method HEXNEM1.