ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
E. E. Bende, A. H. Hogenbirk, J. L. Kloosterman, H. van Dam
Nuclear Science and Engineering | Volume 133 | Number 2 | October 1999 | Pages 147-162
Technical Paper | doi.org/10.13182/NSE99-A2078
Articles are hosted by Taylor and Francis Online.
An analytical expression was derived for the average Dancoff factor of a fuel kernel (Cfk) in a pebble of a high-temperature gas-cooled reactor. This Dancoff factor accounts for the probability that a neutron escaping from a fuel kernel enters another fuel kernel, in the same pebble or in other pebbles, without colliding with a moderator nucleus in between. If the fuel zone of the pebble is thought to be of infinite dimensions, the Dancoff factor becomes equal to the so-called infinite-medium Dancoff factor Cfk. The Cfk has been determined by the evaluation of three existing analytical expressions and by two Monte Carlo calculations performed with the MCNP-4A code, for various coated-particle densities. The Dancoff factor Cfk can be written as Cfk times a correction factor. The latter has been calculated for different fuel zone radii and pebble shell thicknesses. For the standard pebble, Cfk as a function of the number of coated particles has been calculated both analytically and with MCNP. The results of both methods are in good agreement. The analytical calculation method is preferred because it consumes practically no CPU time and obviates the building of MCNP models.