ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
Tomomi Uchiyama
Nuclear Science and Engineering | Volume 133 | Number 1 | September 1999 | Pages 92-105
Technical Note | doi.org/10.13182/NSE99-A2075
Articles are hosted by Taylor and Francis Online.
Air-water two-phase flows around a rectangular cylinder located in vertical upward flows are analyzed by an incompressible two-fluid model using the two-dimensional upstream finite element method proposed earlier. The Reynolds number, based on the cross-stream width of the cylinder and the free-stream velocity of the liquid phase, is 2.0 x 104, and the volumetric fraction of the gas phase upstream of the cylinder g0 ranges from 0 to 0.075. Three kinds of cylinders with the thickness-to-width ratios D/B of 0.5, 1, and 1.5 are employed. The calculated flows exhibit unsteady behavior with the von Kármán vortices shedding from the cylinder into the wake at every g0 value. The volumetric fraction of the gas phase is higher in the wake and achieves maximum value at the center of the vortices, where the pressure reaches its minimum value. The flow field and the vortex-shedding frequency are greatly affected not only by the g0 value but also by the D/B ratio.