ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Robin P. Gardner, Lianyan Liu
Nuclear Science and Engineering | Volume 133 | Number 1 | September 1999 | Pages 80-91
Technical Paper | doi.org/10.13182/NSE99-A2074
Articles are hosted by Taylor and Francis Online.
The generation of first estimate geometry-independent fine-mesh three-dimensional importance maps with simple one-dimensional diffusion models is demonstrated for the Monte Carlo simulation of the neutron porosity oil well logging tool response benchmark problem. By combining the approach of using simple one-dimensional steady-state diffusion models for calculating neutron adjoint flux with the geometry-independent fine-mesh-based Monte Carlo importance approach previously developed, an automated and efficient variance reduction method is obtained for this specific problem. A surprising result is that the converged figures of merit after iteration are consistently larger when the initial importance map is based on the one-dimensional diffusion model rather than that obtained from an analog Monte Carlo simulation.