ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Hiroshi Takahashi
Nuclear Science and Engineering | Volume 41 | Number 2 | August 1970 | Pages 259-270
Technical Paper | doi.org/10.13182/NSE70-A20712
Articles are hosted by Taylor and Francis Online.
The Monte Carlo method is applied to calculate the reactivity change due to a moving reflector block in the pulsed fast reactor system. This reactivity change is an important quantity in the determination of the power pulse width. In the important region of small displacements about the maximum reactivity point, the reactivity change is so small that the ordinary Monte Carlo methods, using the importance sampling, Russian roulette, or splitting techniques, require prohibitively long calculation times. To avoid this difficulty, a new Monte Carlo method, which directly calculates the geometry coefficient of reactivity due to a geometry perturbation, is developed by adopting the method used in the calculation for the Doppler coefficient by Olhoeft. The formulation of the new method is discussed. The GEMCM code for this geometry perturbation, which is made by modifying the 05R code, is described. Finally, an analysis of the critical experiment for the pulsed fast reactor is carried out using this method and the applicability of the method is discussed.