ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
D. R. Harris, V. Prescop
Nuclear Science and Engineering | Volume 37 | Number 2 | August 1969 | Pages 171-179
Technical Paper | doi.org/10.13182/NSE69-A20675
Articles are hosted by Taylor and Francis Online.
A reactor can be analyzed as a multiplicative stochastic process or, approximately, as a deterministic process. When feedback is present, the stochastic and deterministic analyses can differ qualitatively as well as quantitatively, as is illustrated by the concept of stability. In the present study, a stochastic model of a nuclear power reactor with 135Xe, 135I, and control feedback is considered as an example of a nonlinear stochastic process. The values of variances and covariances are calculated from the first- and second-moment equations, using an iterative procedure. Numerical criteria for the value of the feedback coefficient for marginal stationarity of the stochastic model are compared with the corresponding criteria for the stability of the corresponding linearized deterministic model and found to be identical, within eight significant figures.