ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
R. Accorsi, M. Marseguerra, E. Padovani, E. Zio
Nuclear Science and Engineering | Volume 132 | Number 3 | July 1999 | Pages 326-336
Technical Paper | doi.org/10.13182/NSE99-A2067
Articles are hosted by Taylor and Francis Online.
In real, complex plants, a sensitivity analysis of the effects that variations in the plant inputs and design parameters have on the outputs is of great importance both from the point of view of productivity and of safety. To a first approximation, sensitivity analysis consists of estimating the partial derivatives of the outputs with respect to the varied quantities. These derivatives cannot be obtained on the real plant directly since the effects of all the involved variables are intermixed. Therefore, one has to resort to suitable computational models and algorithms.A new neural network approach that aims at creating a differentiable copy of the plant is proposed. A feature of the method is that the data for network training are collected with the system in nominal operation: This represents, indeed, a fundamental constraint for all risky plants, for which unrestrained playing is definitely not recommended. The sensitivity coefficients (partial derivatives) thereby obtained are applied for the regulation of the reactivity of a simulated pressurized water reactor in response to changes in the electric load at the power grid, so as to maintain the average temperature of the water in the reactor core at a constant value.