ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R. Accorsi, M. Marseguerra, E. Padovani, E. Zio
Nuclear Science and Engineering | Volume 132 | Number 3 | July 1999 | Pages 326-336
Technical Paper | doi.org/10.13182/NSE99-A2067
Articles are hosted by Taylor and Francis Online.
In real, complex plants, a sensitivity analysis of the effects that variations in the plant inputs and design parameters have on the outputs is of great importance both from the point of view of productivity and of safety. To a first approximation, sensitivity analysis consists of estimating the partial derivatives of the outputs with respect to the varied quantities. These derivatives cannot be obtained on the real plant directly since the effects of all the involved variables are intermixed. Therefore, one has to resort to suitable computational models and algorithms.A new neural network approach that aims at creating a differentiable copy of the plant is proposed. A feature of the method is that the data for network training are collected with the system in nominal operation: This represents, indeed, a fundamental constraint for all risky plants, for which unrestrained playing is definitely not recommended. The sensitivity coefficients (partial derivatives) thereby obtained are applied for the regulation of the reactivity of a simulated pressurized water reactor in response to changes in the electric load at the power grid, so as to maintain the average temperature of the water in the reactor core at a constant value.