ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Wayne K. Lehto, John M. Carpenter
Nuclear Science and Engineering | Volume 33 | Number 2 | August 1968 | Pages 225-237
Technical Paper | doi.org/10.13182/NSE68-A20660
Articles are hosted by Taylor and Francis Online.
Fission rate fluctuations at low power in a reactor with a large fission-product inventory have been observed in the pool-type Ford Nuclear Reactor. A gaseous Cerenkov detector was used to sense the high-energy, prompt-fission gamma rays in the presence of a fission-product gamma field of 105 to 106 R/h. The ratio β/l is determined from the cross power spectral density of the fluctuations in the signals from two of these detectors. Both this spectrum and the power spectral density of the output of a single detector show a large low-frequency component. This is attributed to moderator temperature fluctuations present when the fission-product decay heat is removed by natural circulation of the coolant. The temperature fluctuations as measured with a short-time-constant thermocouple are shown to be correlated to those in the fission rate. The detector is described, as well as a basis for calculating its performance and efficiency. A theory of the gamma noise experiment that reveals the effects of the detector on the measured spectrum is presented.