ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
P. B. Parks, D. J. Pellarin, N. H. Prochnow, N. P. Baumann
Nuclear Science and Engineering | Volume 33 | Number 2 | August 1968 | Pages 209-217
Technical Paper | doi.org/10.13182/NSE68-A20658
Articles are hosted by Taylor and Francis Online.
Thermal-neutron diffusion coefficients for H2O and D2O were determined from static measurements of the neutron relaxation length in boron poisoned H2O and D2O and pulsed measurements of the neutron die-away in different sized containers of these two moderators. The coefficients derived for H2O are: These results agree well with previously reported coefficients, fairly well with Honeck's calculations, and very well with Dorning's more recent calculations. The diffusion coefficients for D2O were derived from data in the range of (equivalent) poison concentrations, ∑a(B) = −0.04 to +0.04/cm. Restricting the data to these limits avoids possible difficulties associated with the approach to the Corngold limits at κ = (∑t)min and . The coefficients derived for D2O are: Unlike previous experiments, these results indicate no discrepancy between pulsed and static determinations of D0 for D2O.