ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
P. B. Parks, D. J. Pellarin, N. H. Prochnow, N. P. Baumann
Nuclear Science and Engineering | Volume 33 | Number 2 | August 1968 | Pages 209-217
Technical Paper | doi.org/10.13182/NSE68-A20658
Articles are hosted by Taylor and Francis Online.
Thermal-neutron diffusion coefficients for H2O and D2O were determined from static measurements of the neutron relaxation length in boron poisoned H2O and D2O and pulsed measurements of the neutron die-away in different sized containers of these two moderators. The coefficients derived for H2O are: These results agree well with previously reported coefficients, fairly well with Honeck's calculations, and very well with Dorning's more recent calculations. The diffusion coefficients for D2O were derived from data in the range of (equivalent) poison concentrations, ∑a(B) = −0.04 to +0.04/cm. Restricting the data to these limits avoids possible difficulties associated with the approach to the Corngold limits at κ = (∑t)min and . The coefficients derived for D2O are: Unlike previous experiments, these results indicate no discrepancy between pulsed and static determinations of D0 for D2O.