ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
S. P. Congdon, M. R. Mendelson
Nuclear Science and Engineering | Volume 33 | Number 2 | August 1968 | Pages 151-161
Technical Paper | doi.org/10.13182/NSE68-A20653
Articles are hosted by Taylor and Francis Online.
The derivation of blackness boundary conditions is reviewed and generalized into a standard matrix formalism that is valid for any order PN approximation. It is then shown that for a finite slab effective diffusion and absorption matrices can be found which reproduce blackness boundary conditions at the interfaces. In the continuous or infinitely many mesh point description of the black region, the analysis leads to infinite series expressions for the equivalent matrices, which have been evaluated explicitly by means of the Caley-Hamilton theorem for the case of the P 3 approximation. Equivalent matrices have also been derived for two- and three-mesh-point descriptions of the black region. Numerical calculations for three model problems indicate that P3 blackness theory is a great improvement over conventional P3 theory and is roughly equivalent to P5 theory in the prediction of both the exterior scalar flux and the absorption rate in the black region.