ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
Amir N. Nahavandi, Richard F. Von Hollen
Nuclear Science and Engineering | Volume 22 | Number 4 | August 1965 | Pages 463-469
Technical Paper | doi.org/10.13182/NSE65-A20633
Articles are hosted by Taylor and Francis Online.
An analytical model for the prediction of steam-water critical-flow pressure, mass discharge and pressure gradients in the approach region to critical flow is presented. The continuity, momentum and energy equations are applied to successive differential elements along the conduit and are solved numerically on an IBM-7094 digital computer for the maximum discharge flow rate. The proposed model assumes thermal equilibrium conditions and employs the modified Armand correlation to relate the void fraction to steam quality. The frictional losses in the momentum equation are obtained by two methods: a separated flow model and Armand model. A comparison of the analytical predictions with available test results on small diameter pipes shows that: 1) the present model agrees with the published test data; and 2) both frictional loss models are equally valid, and the selection of a particular method depends on the degree of conservatism desired.